If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-29=0
a = 3; b = 5; c = -29;
Δ = b2-4ac
Δ = 52-4·3·(-29)
Δ = 373
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{373}}{2*3}=\frac{-5-\sqrt{373}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{373}}{2*3}=\frac{-5+\sqrt{373}}{6} $
| 14x+-4.9x^2=0 | | (x+12)/(x+2)=2 | | 3z2=7z-1 | | 18x-6=18x+9 | | (x+12)-(2x+4)=0 | | 2x-1=5x+13/3 | | 40.48+0.50m=120 | | x+6/11=1 | | 18x-6=18+9 | | a-15=14a-3 | | 4(6-c)=-15 | | 0=-4.9t^2+0.5t | | -8+c=-5 | | 2x+4x-12=66 | | 3x2-156x+5=0 | | 6z+2=38 | | 2/3(6x-3=1/2(6x-4) | | 2d2=72 | | 5^(3y+2)=7^(5y) | | 10^2y=64 | | 4z=3-z | | 2(q-7)=26 | | Y=-2×+1;6×+2y=22 | | 4(p+4)=32 | | Y=-2×+1,6×+2y=22 | | 12x4=8+24 | | 96=-0.8q | | 10j=0 | | 2+d-4=8 | | (2-y)^2+y^2=8 | | (2-y)^2+y^2=0 | | |5n|+3=23 |